

FNAL Accelerator Complex 101: What's Happening in the Machines?

Ron Moore - FNAL

- Accelerator Complex Overview
- Shot-Setup according to the MCR
- Miscellany

FermilabTevatron Accelerator With Main Injector

Channel 13, a.k.a "Notify"

Channel 13 with help

MCR Glossary

- **Stack** = antiprotons being stored in the Accumulator
- **Store** = beam kept circulating continuously in the Tevatron; can be an HEP store (protons and pbars), or proton-only for studies/maintenance
- Flattop = Tev ramped to 980 GeV, before low β squeeze
- Squeeze = Focusing the beams to smaller transverse size at CDF/D0
- Low Beta = Tev @ 980 GeV, after low β squeeze
- **Initiate Collisions** = turn on electrostatic separators to make beams collide at the centers of CDF and D0
- **Scraping** = Removal of beam "halo" (stuff far away from beam center) by moving stainless steel collimators close to beam; reduces beam losses at CDF/D0; done automatically after collisions begin
- Cogging = moving the (pbar) beam longitudinally desired location
- **Abort Gaps** = series of empty buckets between bunch trains to allow abort kickers to reach proper voltage to kick beam into dump blocks

Instrumentation Glossary

- **FBI** = Fast Bunch Integrator
 - Provides Tev bunch intensity measurements
- **SBD** = Sampled Bunch Display
 - Gives Tev bunch length measurements
- **TEL** = Tevatron Electron Lens
 - Device that shoots a ~few mA electron beam in the Tev beam pipe
 - Used to knock beam out of the abort gaps (reducing CDF backgrounds)
 - Intended to compensate beam-beam tune shift of pbars from protons (not yet)
- **SDA** = Shot Data Acquisition
 - Accelerator data collection/storage for each shot/store; used for offline analysis
- **QPM** = Quench Protection Monitor
- **QBS** = Quench Bypass Switch

Prior to Shot-Setup

- Experiments turn off HV after MCR calls
- Experiments call MCR to confirm they are ready
- Tev abort kickers fire driving beam into A0 dump blocks

- Between one store and the next:
 - Assume sufficient pbars to go again(>100mA)
 - Time between shots:
 - \sim 2-3 hours if things are going well
 - Beams Division goal is 1 hour
 - Calibrations (Quiet time ?)

- Beginning of the next store:
 - Protons are injected first, then pbars
 - Accelerate beams to 980 GeV
 - Cogging
 - Low Beta Squeeze
 - Scraping
- Once losses are low and the beam is stable, Ramp the HV and begin taking data

• Injection – the process of transferring protons or antiprotons from the Main Injector to the Tevatron (4 bunches at a time)

• Ramping – the magnetic fields of the magnets are increased simultaneously, boosting proton/pbar energies from 150 GeV to 980 GeV ("flattop")

- **cogging** the process of spacing the bunches of protons or pbars in the TeVatron so that they collide at the proper points in the ring.
- low beta squeeze after injecting protons and pbars into the TeVatron, a special set of quadrupoles are turned on at B0 to reduce the size of the beam and increase luminosity.
- **scraping** using colliminators to remove the beam "halo" and reduce losses.
 - MCR will notify CDF when scraping is complete, but you should be monitoring the ACNET variable T:VSCRAP too!

Channel 13 while Tev is ramping

Tev Array Display

- Shows bunch-by-bunch parameters
- Usually running on Windows machine in CDF control room??
- Useful during injection to see how many bunches are in the Tev

Coalesced vs Uncoalesced Beam

• <u>Uncoalesced</u>

- 30 or so consecutive RF buckets filled with ~10 E9 protons/bunch
- Usually used for machine tune-up, studies
- Protons only (well, pbars can be uncoalesced if needed for some study)

Coalesced

- 5-7 buckets of beam merged into a single RF bucket at 150 GeV in the Main Injector
- Protons and pbars always coalesced for HEP stores

Two Little Bunches in the Tev?

- No, the FBI ACNET devices look only at buckets that should be populated with coalesced beam for HEP store
- 2 of the 30 bunches of uncoalesced protons happen to be in the buckets used for P1 & P2